Smoothing and Strichartz Estimates for Perturbed Schrödinger, Klein-Gordon and Wave Equations in Exterior Domain

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized solitary wave solutions for the Klein-Gordon-Schrödinger equations

Some new generalized solitary solutions of the Klein–Gordon–Schrödinger equations are obtained using the Exp-function method, which include some known solutions obtained by the F-expansion method and the homogeneous balance method in the open literature as special cases. It is shown that the Exp-function method is a straight, concise, reliable and promising mathematical tool for solving nonline...

متن کامل

Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials

In this paper, we prove Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials.

متن کامل

solutions of the perturbed klein-gordon equations

this paper studies the perturbed klein-gordon equation by the aid of several methods of integrability. there are six forms of nonlinearity that are considered in this paper. the parameter domains are thus identified.

متن کامل

Perturbed Coulombic potentials in Dirac and Klein-Gordon equations

A relativistic extension of our pseudo-shifted l–expansion technique is presented to solve for the eigenvalues of Dirac and Klein-Gordon equations. Once more we show the numerical usefulness of its results via comparison with available numerical integration data.

متن کامل

Dispersion Estimates for Discrete Schrödinger and Klein–gordon Equations

The long-time asymptotics is derived for solutions of the discrete 3dimensional Schrödinger and Klein–Gordon equations. §

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Funkcialaj Ekvacioj

سال: 2020

ISSN: 0532-8721

DOI: 10.1619/fesi.63.199